

How 3D Memory is Changing Computing

DATE 2015 W05 Robert Patti, CTO rpatti@tezzaron.com

Tezzaron Semiconductor

03/13/2015

Why 3D? – Expiring Economics

Why 3D? – Expiring Economics

The Ugly Truth

Sparse Matrix Operations Particle Physics, Weapons Dev. **5.9% efficiency**

Finite Element Analysis Weather & Ocean Forecasting 7.1% efficiency I/O BW to Processing Ratio Radar, Sonar, Imaging Sensors 12% efficiency

Large Matrix Manipulation Engineering Design of Complex Structures 8.4% efficiency Memory Intensive Calculations Cryptanalysis < 3.0% efficiency

ASCIQ

<u>More Bad News</u> <u>The Bandwidth Knothole</u>

➤To continue to increase CPU performance, exponential bandwidth growth required.

➤More than 200 CPU cycles of delay to memory results in cycle for cycle CPU stalls.

≻16 to 64 Mbytes per thread required to hide CPU memory system accesses.

Memory bound HPC performance 1/500th of CPU bound performance

 Need 50x bandwidth improvement.
 Sound performance

 Need 10x better cost model than embedded
 >Memory I/O power is running away.

HPC Power Limit

• Exascale

- 1e18 FLOPs
- ~10MW logic power budget
- 10pJ/FLOP power goal --- 20pJ/FLOP needed

Power Efficiency over Time

Energy per Operation

Tezzaron Semiconductor

03/13/2015

On-Chip Memory, Flash, etc... Unfriendly Integration

Tezzaron Semiconductor

AMD 2014 3D-ASIP

HPC Future Scaling

- Need to fix efficiency problem
 - Change the existing target of EPC; limits scope of usage
 - New architectures using close memory
 - 3D heterogeneous integration
 - Paradigm shift in machine nodal interconnect
 - Network fabric becomes memory (like) fabric
 - NUMA
- Need to fix bandwidth problem
 - 3D provides lots of bandwidth
- Need to fix power problem
 - 3D gives shorter wires, less long I/O, allows BoC

processes

INDUSTRY DIRECTION

Tezzaron Semiconductor

03/13/2015

Intel's HPC – Heavily Dependent on New Memories

3+ TFLOPS¹ In One Package Parallel Performance & Density

New for Knights Landing

(Next Generation Intel® Xeon Phi[™] Products)

Platform Memory: DDR4 Bandwidth and Capacity Comparable to Intel® Xeon® Processors

Compute: Intel® Silvermont Arch. (Intel® Atom")

- Low-Power Cores with HPC Enhancements³
- 3X Single Thread Performance⁴ vs Prior Gen.
- Intel Xeon Processor Binary Compatible⁵

On-Package Memory: High Performance

- up to 16GB at launch
- 1/3X the Space⁶
- 5X Bandwidth vs DDR4⁷
 5X Power Efficiency⁶ Jointly Developed with Micron Technology

Intel[®] Silvermont Arch. Enhanced for HPC[®]

Integrated Fabric

Processor Package

Moving Forward: Memory is part of the Fabric

Knights Landing Processor Architecture

Up to 72 Intel Architecture cores based on Silvermont (Intel® Atom processor)

- Four threads/core
- Two 512b vector units/core
- Up to 3x single thread performance improvement over KNC generation

Full Intel® Xeon processor ISA compatibility through AVX-512 (except TSX)

6 channels of DDR4 2400 MHz -up to 384GB

36 lanes PCI Express* Gen 3

8/16GB of high-bandwidth on-package MCDRAM memory >500GB/sec 200W TDP

Memory, Switches, and Photonics

Industry Memories HBM/HMC/DDR4

Advanced Packaging Drives Systems

Conventional RAM Architecture

- Preserves traditional RAM problems
- Adds stacking costs

HBM Architecture

- 2 Channel / Die
- 4 or 8 Channel Stacks
- 128 bit CIO bus
- B2 or B4
- 2K or 4K Bytes / Page
- 1.2V I/O
- Staggered 96mm x
 55mm Pitch, 25µ bump

HMC Architectural Approach

Memory Bits

Periphery «

- Decoders
- SAmps
- Drivers

High Speed SERDES I/O In Logic Process

Gen4 "Dis-Integrated" 3D Memory

2 million vertical connections per layer per die

I/O layer contains: I/O, interface logic and _____ R&R control CPU. 65nm node

Better yielding than 2D equivalent!

DRAM layers 4xnm node

Controller layer contains: sense amps, CAMs, row/column decodes and test engines. 40nm node

New Memories

	DiRAM4	DiRAM4 CMOS	DiRAM4 Hub	HMC	HBM
Density	64 Gb	64Gb	128 Gb	16 Gb	8 Gb
	8 GB	8 GB	16 GB	2 GB	1 GB
Latency	7 ns	7 ns	Variable	Variable	33 ns
Min Ref	64 bits	64 bits	256 bits	256 bits	256 bits
Interface	0.7 V	$0.7 - 1.2 \mathrm{V}$	1.2 V	SerDes	1.2 V
tRC	15 ns	15 ns	15 ns	50 ns	48 ns
BW	16 Tb/s	4 Tb/s	1Tb/s	1 Tb/s	1 Tb/s
	2 TB/s	500 GB/s	128 GB/s	128 GB/s	128 Gb/s
Channels	256	64	1	1*	8
Banks per Channel	16	64	8192	128	8

Next: NDP/ Processor in Memory

- 64 light weight cores
 - ~32GOPS + 1Tb/s external request traffic + 3Tb/s route through traffic
- 4 port
 - ~1Tb/s/port
- Built-in full crossbar
- 64Gb
- Packet based
 - Nodal addressing support
- Memory fabric is the machine fabric

Interposer Systems

- SIP/SSIP
 - Power Conversion
 - Cooling
 - Photonics
- Optimization

Tezzaron Semiconductor

23

Luxtera Photonic Transceiver

Tezzaron Semiconductor

03/13/2015

Summary

- 3D is required for new levels of performance
- 3D enables new applications
- 3D does what More Moore can't
- It's not just about new manufacturing technology
 - Its new design
 - Its new architecture

