

A Perspective on Manufacturing 2.5/3D

Bob Patti, CTO rpatti@tezzaron.com

2.5 and 3D Opportunities & Goals

- Choices:
 - Interposers
 - Organic
 - Silicon
 - Glass
 - Chip stacking
 - Wafer to wafer
 - Die to wafer
- What do we want from doing this?
 - Performance
 - Power

- Size
- Cost ?
 - Near Term -- Only from the system

3D is Coming of Age

Samsung

Wide Bus DRAM
Micron

Wide Bus DRAM Intel

CPU + memory

OKI

CMOS Sensor

Xilinx

Raytheon/Ziptronix

PIN Detector Device

IBM

RF Silicon Circuit Board / TSV Logic & Analog

Toshiba 3D NAND

Samsung

22 layer 3D NAND

The Effect of 2.5/3D on Devices

Span of 3D Integration

Rich and Varied Technologies

Packaging

Wafer Fab

Tezzaron 3D-ICs 100-1,000,000/sqmm

IBM/Samsung

IBM

1s/sqmm

Peripheral I/O

- Flash, DRAM
- **CMOS Sensors**

100,000,000s/sqmm Transistor to Transistor

Ultimate goal

Technical Advances

- TSV quality
 - Metrology
- Thinning control
 - TSV end point detection
- CAE tools
 - 3D DRC/LVS
 - Simulation of 3D devices
- Bond quality
- Designers have some handle on what can be done

Industry Advances

- There is an ecosystem
 - It is still young but it is in exponential growth mode
- Vendors are 3D aware!
 - TSV specific process hardware
 - 2.5D and 3D specific CAD
- It is not if but when

Tezzaron 3D Devices

SEMICONDUCTOR

High Performance 3D Memory

Octopus – Proof of Concept

- 1-4Gb
- 16 Ports x 128bits (each way)
- @1GHz
 - CWL=0 CRL=2 SDR format
 - 5ns closed page access to first data (aligned)
 - 12ns full cycle memory time
 - >2Tb/s data transfer rate
- Max clk=1.6GHz
- Internally ECC protected, Dynamic self-repair, Post attach repair
- 115C die full function operating temperature

DiRAM4™

- 4-64Gb
- 64-256 Ports x 64bits (each way)
- @1GHz
 - 5-7ns closed page access to first data (aligned)
 - 12ns full cycle memory time
 - >16Tb/s data transfer rate
 - 4096 banks
 - 2+2pJ/bit

DiRAM4 "Dis-Integrated" Memory

connections per lay per

DRAM layers 4xnm node

Controller layer contains: senseamps, CAMs, row/column decodes and test engines. 40nm node

Better yielding than 2D equivalent!

die I/O layer contains: I/O, interface logic

2 million vertical

and R&R control CPU. 65nm node

Capillar underfill C2W Cu2Cu bond 2.5/3D in Combination TSI TSV H:R CPU(2 Gbps serdes+2xDDR2 channel to 3DMem+2xDDR2 channel to PCB) IME A-Star / Tezzaron Collaboration 150um pitch IME A-Star / Tezzaron Collaboration μBumps Die to Wafer Cu Thermal Diffusion Bond C4 Bumps 3 Layer 3D Memory 2 Layer Processor FPGA (4Xnm) level#4 level#3 level#2 **Active Silicon Circuit Board Organic Substrate** level#1 level#0 **Solder Bumps**

Tezzaron Dummy Chip C2C Assembly

Memory die

C2C sample

X-ray inspection indicated no significant solder voids

X-section of good micro bump

CSCAN showed no underfill voids (UF: Namics 8443-14)

WHAT IS IMPORTANT?

TSV Pitch ≠ Area ÷ Number of TSVs

TSV pitch issue example

- 1024 bit busses require a lot of space with larger TSVs
- They connect to the heart and most dense area of processing elements
- The 45nm bus pitch is ~100nm; TSV pitch is >100x greater

TSV Pitch ≠ Area ÷ Number of TSVs

TSV pitch issue example

- 1024 bit busses require a lot of space with larger TSVs
- They connect to the heart and most dense area of processing elements
- The 45nm bus pitch is ~100nm; TSV pitch is >100x greater
- The big TSV pitch means TOF errors and at least 3 repeater stages

Die to Wafer – 2.5D

RPI/Dr. James Lu

- •KGD
- Multilayer capability
- •Incremental risk buy down
- Extends SOC concepts

Tools

What Has Tezzaron Learned?

- Systems require multiple solutions
 - SIP is the future of SOC
 - Logic, Memory, Analog, MEMS, Photonics, Cooling
 - InP, GaAs, SiGe, GaN, CNT
- To practice 2.5 and 3D you need multiple technologies
 - Cu-Cu
 - DBI
 - 150C bonding
 - Oxide, IM, gold
 - Via middle
 - Via last
 - Cu TSV
 - W TSV

Tezzaron/Novati

- "Volume" 2.5D and 3D Manufacturing in 2013
- Interposers
- Future interposers with
 - High K Caps
 - Photonics
 - Passives
 - Power transistors
- Wholly owned Tezzaron subsidiary
- Cu-Cu, DBI[®], Oxide, IM 3D assembly

Facility Overview

Capabilities

- Over 150 production grade tools
- 68000 sq ft Class 10 clean room
- 24/7 operations & maintenance
- Manufacturing Execution Systems (MES)
- IP secure environments, robust quality systems
- ITAR registered
- Full-flow 200mm silicon processing, 300mm back-end (Copper/Low-k)
- Process library with > 25000 recipes
- Novel materials (ALD, PZT, III-V, CNT, etc)
- Copper & Aluminum BEOL
- Contact through 193nm lithography
- Silicon, SOI and Transparent MEMS substrates
- Electrical Characterization and Bench Test Lab
- Onsite analytical tools and labs: SIMS, SEM, TEM, Auger, VPD, ICP-MS, etc

- ISO 9001:2008 13485:2013
- TRUST 2013

The Big Problems Left Are...

- Test
 - 5k I/O going to 20k I/O going to 100k I/O
 - When is the testing good enough?
 - Biggest hidden cost
- The right processes
 - HVM scaling
- The heavy CAD tools
 - 3D aware synthesis, P&R
 - We don't know what we don't know

Ongoing: Work to be Done

New Data Needs and Standards

- Notch
- Orientation limitations
- Run out / street size / magnification
- Die location
- TCE matching / stress / warpage
 - TCE zero match at what temperature?
- Materials
- Planarity
- Surface roughness

Decisions to Make

2.5D Alternatives

- Silicon Interposers
 - 2-3um L/S/D
 - Rs and Cs
 - Active is the future
 - Handling & handoff
- Organics
 - 5-6 um
 - Litho limits
 - Material planarity limits
 - Great cost structure
 - TCE Challenges
 - Large substrate
- Glass
 - Large substrate

THE ROAD AHEAD...

Near End-of-Line TSV Insertion

Photonics for Short Haul

14nm FF Chip

- 16x100G Optical Transceivers
 - 8 Optical I/O per Couplers
- Four optical power supplies

 Photonic Interposer with TSVs

Integrating Fluidics into 3D: Liquid Cooling

It's a MEMS, 2.5D SOC/SIP future...

"5.5D" Systems

- SIP/SSIP
 - Power Conversion
 - Cooling
 - Photonics
- Optimization
 - Extending to power
- Mixed PCB/IC Metaphor

Summary

- Industry has the momentum
 - Generating tools and technology
 - Problems are now deemed solvable
- 3D is proving value
 - There is production and it is expanding
- Lingering questions about who does what
 - Foundry to OST interface
- Test and HVM processes are the growth opportunities

Sensors

Computing MEMS

Communications

